A Generalized Polymatroid Approach to Stable Matchings with Lower Quotas

نویسنده

  • Yu Yokoi
چکیده

Classified stable matching, proposed by Huang, describes a matching model between academic institutes and applicants, where each institute has upper and lower quotas on classes, i.e., subsets of applicants. Huang showed that the problem to decide whether there exists a stable matching or not is NP-hard in general. On the other hand, he showed that the problem is solvable if the classes form a laminar family. For this case, Fleiner and Kamiyama gave a concise interpretation in terms of matroids and showed the lattice structure of stable matchings. In this paper, we introduce stable matchings on generalized matroids, extending the model of Fleiner and Kamiyama. We design a polynomial-time algorithm which finds a stable matching or reports the nonexistence. We also show that, the set of stable matchings, if nonempty, forms a lattice with several significant properties. Furthermore, we extend this structural results to the polyhedral framework, which we call stable allocations on generalized polymatroids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Popular Matchings with Lower Quotas

We consider the well-studied Hospital Residents (HR) problem in the presence of lower quotas (LQ). The input instance consists of a bipartite graph G = (R∪H, E) where R and H denote sets of residents and hospitals respectively. Every vertex has a preference list that imposes a strict ordering on its neighbors. In addition, each hospital h has an associated upper-quota q+(h) and lower-quota q−(h...

متن کامل

Envy-free Matchings with Lower Quotas

While every instance of the Hospitals/Residents problem admits a stable matching, the problem with lower quotas (HR-LQ) has instances with no stable matching. For such an instance, we expect the existence of an envy-free matching, which is a relaxation of a stable matching preserving a kind of fairness property. In this paper, we investigate the existence of an envy-free matching in several set...

متن کامل

A matroid approach to stable matchings with lower quotas

In SODA’10, Huang introduced the laminar classified stable matching problem (LCSM for short) that is motivated by academic hiring. This problem is an extension of the wellknown hospitals/residents problem in which a hospital has laminar classes of residents and it sets lower and upper bounds on the number of residents that it would hire in that class. Against the intuition that stable matching ...

متن کامل

A class of multipartner matching markets with a strong lattice structure

For a two-sided multipartner matching model where agents are given by path-independent choice functions and no quota restrictions, Blair [7] had shown that stable matchings always exist and form a lattice. However, the lattice operations were not simple and not distributive. Recently Alkan [3] showed that if one introduces quotas together with a monotonicity condition then the set of stable mat...

متن کامل

Popularity in the Generalized Hospital Residents Setting

We consider the problem of computing popular matchings in a bipartite graph G = (R ∪ H, E) where R and H denote a set of residents and a set of hospitals respectively. Each hospital h has a positive capacity denoting the number of residents that can be matched to h. The residents and the hospitals specify strict preferences over each other. This is the well-studied Hospital Residents (HR) probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2017